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Abstract— The growth of scientific information and the
increasing automation of data collection have made databases
integral to many scientific disciplines including life sciences,
physics, meteorology, earth and atmospheric sciences, and chem-
istry. These sciences pose new data management challenges to
current database system technologies. The thesis work presented
in this paper proposes a database server for next-generation
scientific data management. The proposed sever realizes two
core requirements in scientific databases, mainly, (1) Annotation
management, and (2) Complex dependencies involving human
actions. In the paper, we discuss the challenges involved in each
of these requirements and present the key contributions and main
results in each of the two fronts.

I. INTRODUCTION

Scientific databases are used at various stages of scientific
experimentation and analysis, e.g., for depositing raw data,
storing experiments and results of analysis processes, main-
taining interpretations and comments about the data, tracking
the provenance and history of data changes, and querying
the existing data. As such, scientific databases represent the
backbone of scientific discoveries. However, current database
technologies have not kept pace with the proliferation and
specific requirements of scientific databases [10], [22], [29].
In many cases, scientists tend to store their data in flat files
or spreadsheets mainly because current database systems lack
several functionalities that are needed by scientific applica-
tions, e.g., annotation and provenance management, history
tracking of data changes, management of complex dependen-
cies among the data items, and efficient access to a large pool
of complex and non-traditional data types. The thesis work
presented in this paper addresses two core requirements in
scientific databases, mainly, (1) Annotation management, and
(2) Complex dependencies involving human actions. In this
section, we give a background on and discuss the challenges
involved in each of the two requirements.

Annotation Management: Annotations play a key role in
understanding and curating scientific databases. Annotations
may represent comments, descriptions, warning or error mes-
sages, questions about any subset of the data, lineage informa-
tion, among several others. Therefore, annotation management
is a vital mechanism for sharing knowledge and building
an interactive and collaborative environment among database
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GID GName GSequence

JW0080 mraW ATGATGGAAAA…

JW0041 fixB ATGAACACGTT…

JW0037 caiB ATGGATCATCT…

JW0055 yabP ATGAAAGTATC…

GID GName GSequence

JW0080 mraW ATGATGGAAAA…

JW0041 fixB ATGAACACGTT…

JW0037 caiB ATGGATCATCT…

JW0055 yabP ATGAAAGTATC…

Gene A3: obtained from GenoBaseA3: obtained from GenoBase

A1: Curated by user adminA1: Curated by user admin

A2: possibly split by frameshiftA2: possibly split by frameshift

A5: This gene has an unknown function

A4: pseudogene

A5: This gene has an unknown function

A4: pseudogene

JW0080 JW0080 mraWmraW ATGATGGAAAAATGATGGAAAA……

JW0037JW0037 caiBcaiB ATGGATCATCTATGGATCATCT……

Fig. 1. Example of annotations

users and scientists. Annotation management involves several
challenges that include:
(1) Storing multi-granular annotations: Annotations can be
large in size and attached to the data at various granularities,
i.e., users may annotate an entire table, entire column, a
subset of the tuples, a few cells, or a combination of these
(See Figure 1). Because of this combinatorial nature of the
annotations, efficient storage schemes are needed to avoid
replicating the annotations.
(2) Adding annotations and defining behaviors: A key
requirement in annotation management is to provide declar-
ative mechanisms to annotate the data and to specify how
annotations behave under different database operations. For
example, users may want the newly inserted data to be
annotated automatically if it satisfies certain criteria, or may
want annotations to be deleted automatically when the base
data get modified. Moreover, as time passes, annotations may
become worthless or obsolete. Therefore, the DBMS needs
to provide mechanisms to archive existing annotations. For
example, annotation A5 in Figure 1 may become obsolete
when the function of the annotated gene is defined. Hence,
users may want to stop propagating this annotation along with
the query result.
(3) Querying and Propagating annotations seamlessly: Users
want to propagate the annotations along with the query re-
sults and to query the data based on the annotation values
seamlessly without complicating their queries. If annotation
propagation and querying are delegated to end-users (or ap-
plications) without any database system support, then users’
queries may become complex, user-unfriendly, and would
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(a) Example from the biology domain (b) Example from the chemistry domain

Fig. 2. Complex dependencies in scientific applications

require users to be aware of the internal representation of the
annotations. Instead, the DBMS should provide annotation-
aware query operators that facilitates propagation and querying
the annotations along with the data items.

Complex Dependencies Involving Human Actions: Sci-
entific databases are full of complex dependencies among the
data items that may involve human actions, e.g., conducting a
wet-lab experiments, collecting instrument readings, or taking
manual measurements (See Figure 2). In traditional derived
data that are stored inside the database, e.g., deriving age
from the date-of-birth attribute, simple procedures internal to
the database system can be coded and executed automatically
to maintain the consistency of the data. In contrast, when the
derivations involve human actions, these derivations cannot be
coded within the database. Moreover human actions may take
long time to prepare for and perform. As a result, a database
update operation may render all dependent and derived data
items invalid (inconsistent) for unbounded periods of time
while the data still need to be made available for querying.
For example (refer to Figure 2), gene functions are derived
from gene (DNA) sequences. If a gene sequence is modified,
the corresponding gene function, may become invalid. Sim-
ilarly, we may store descriptions of chemical reactions, e.g.,
substrates, reaction parameters, and products. If any of the
substrates in the reaction are modified, the products of the
reaction become invalid until the involved wet-lab experiments
are re-conducted to re-evaluate the reaction product.

Supporting dependencies that involve human actions (more
broadly real-world activities) within the database engine in-
clude the following challenges:
(1) Defining dependencies based on activities: New mecha-
nisms are needed to enable users to define real-world activities
inside the database system and to express the dependencies
among the data items on these activities.
(2) Tracking potentially invalid and outdated data items:
When a database item is modified, the DBMS needs to keep
track of all dependent and derived data items that become
temporarily invalid. Moreover, the DBMS should keep track
of the real-world activities that need to be performed to re-
validate the data.
(3) Extended querying mechanisms: Extended semantics for
query operators are needed to automatically alert users when
the query results contain invalid data items, and to enable
evaluating queries on either valid data only or both valid and
potentially invalid data.
(4) Defining re-validation mechanisms: The DBMS needs
to provide systematic mechanisms for re-validating and/or
correcting the outdated data items.

II. RELATED WORK

Annotation management has been the focus of recent
research as a key requirement in supporting scientific
databases [5], [22], [23], [28]. Annotation management in
the context of relational databases has been addressed in
previous works, e.g., [2], [7], [9], [21], [30], [8]. The two main
systems are DBNotes [2], [9], [3], and MONDRIAN [20],
[21]. DBNotes proposes an extension to SQL, termed pSQL,
that extends the querying capabilities by adding a PROPA-
GATE clause to the SELECT statement that allows users to
specify how to propagate the annotations along with the query
answers. DBNotes proposes several propagation schemes that
allow propagating the annotations on equivalent values re-
sulted from operations such as union and equi-joins. MON-
DRIAN [20], [21] proposes an algebra, termed color algebra,
that extends annotating single values to annotating multiple
related values with the same annotation. Both systems allow
users to add conditions to restrict the propagated annotations
and to query the data based on the annotation values. Although
current annotation management systems focus on querying and
propagating the annotations along with the query results, there
are several aspects of annotation management that have not
been addressed adequately, e.g., efficient storage techniques,
handling multi-granular annotations, processing different types
of annotations with different behaviors, and mechanisms for
adding and archiving annotations. The thesis work presented in
this paper proposes several efficient techniques and algorithms
that address these aspects.

In the context of modeling and tracking the dependen-
cies among the database items, the concept of functional
dependencies (FDs), e.g., [25], [31], cannot be used to keep
track of the dependencies that involve real-world activities.
The reason is that the derivations that involve real-world
activities cannot be codded inside the database system, e.g.,
using database triggers, regardless of how well the database
schema is designed. Other related works are in the areas of
long-running transactions, e.g., [13], [26], active databases,
e.g., [1], [12], and Provenance management, e.g., [2], [4], [6],
[11], and uncertain and fuzzy database systems, e.g., [19],
[32]. However, none of these systems can model or capture
the dependencies among the data items that involve real-
world activities. Hence, they neither keep track of the derived
outdated data that requires re-evaluation and re-validation nor
reflect the status of the invalid data items on the query results.
In history-tracking and multi-version databases, e.g.,[24], an
update operation creates new versions of the modified tuples
and maintains the existing values as old versions. The update
operation may still require executing some real-world activities
to update other dependent data items. Hence, the most recent
version of the database may still exposes potentially invalid
and outdated data for querying. Some systems, e.g., the
checkout\checkin model proposed in [27], query old versions
of the data while the required changes are being performed
on an offline version of the database. The drawbacks of this
approach include violating the need for making users’ updates
available as early as possible, hiding possible data corrections
for unbounded long delays, and resolving any consistency
issues outside the DBMS, i.e., data conflicts are resolved at the
checkin time using version-control systems outside the DBMS.
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ADD ANNOTATION
[ AS VIEW ]
TO <annotation_table_names>
VALUE <annotation_body>
[ON AGGREGATION PROPAGATE]
[ON UPDATE PROPAGATE]
ON <select_statement> ; 0.01
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Fig. 3. Examples of the proposed annotation management techniques and sample performance results

Column-level 
annotation

Cell-level 
annotation

Dialog box for adding annotations and 
specifying their behaviors

Dialog box for filtering the 
propagated annotation

QBE data querying New tabs for managing the annotations

Row-level 
annotation

Fig. 4. Managing annotations via GUI

III. OUR RESEARCH CONTRIBUTIONS

In this section, we present the key contributions in realizing
the proposed prototype server [14], [15], [16], [17], [18].

A. Annotation Management
We proposed a framework for efficient management of large

volumes of multi-granular annotations [14], [18]. The frame-
work includes: (1) New storage schemes that allow efficient
and compact representation of multi-granular annotations. The
proposed storage schemes map the table cells in the database
to points in a two-dimensional space, and map the annotations
to rectangles over these points as illustrated in Figure 3(a). In
this representation, a single annotation is represented by the
minimum number of maximum bounding rectangles (MBR)
that can cover the annotated table cells. For example, although
annotation A2 in Figure 1 is attached to six table cells, it can
be represented by one rectangle that covers these table cells.
(2) Declarative mechanisms to support adding, archiving, and
querying various types of annotations (e.g., see the adding
mechanism in Figure 3(b)). We define three types of annota-
tions: snapshot, view, and join annotations that inherit different
behaviors. For example, in contrast to snapshot annotations
that apply to a data instance, view annotations automatically
annotate newly inserted data if they satisfy certain conditions,
whereas join annotations are attached to data items across

Create Table <R> 
(

<columns_definitions >
….

Add Dependency [<dependency_id>] 
Using <func_name>
Source <T1.c1[, T2.c2, ...] >
Destination <R.c0>
[Where <predicates>] );

Create Function <activity-name> (<input-types>)
Returns <output-type> As real-world activity;

(a) Defining activities and dependencies
(b) Predicate evaluation as either True, False, 

False-positive , or False-negative

Predicate
GFunction = “F2”

False

True

False-positive

False

False-negative

False

GID GSeq GDirection GFunction

JW0013 TGCT… + F1

JW0014 GGTT… + F2

JW0015 GGCT… + F2

JW0018 CGTT… - F4

JW0019 TGTG… + F5

JW0012 TTCG - F7

Wet-lab Exp

Fig. 5. Supporting real-world dependencies

multiple relations and propagate only when these data items
appear together in the query results. (3) Query processing and
optimization techniques to efficiently support querying and
propagating the annotations along with the query results. (4)
New constructs such as ON UPDATE PROPAGATE and ON
AGGREGATION PROPAGATE that allow users to control how
annotations behave under different database operations (Refer
to Figure 3(b)). All the proposed constructs and functionalities
are realized inside PostgreSQL. Since most scientists prefer
to use graphical interfaces over using direct SQL commands,
we provided an easy to use and intuitive GUI using Excel
sheets that facilitate performing the proposed functionalities
and visualizing the annotations as illustrated in Figure 4.
A sample performance analysis is depicted in Figure 3(c)
in which the proposed storage schemes achieves more than
an order of magnitude reduction in storage compared to the
straightforward scheme in which annotations are replicated
and stored with each individual cell.

B. Supporting Dependencies Involving Real-world Activities

We proposed a prototype database server for supporting de-
pendencies that involve real-world activities while maintaining
the consistency of the derived data under update and query
operations [15]. The prototype server includes the following
features: (1) New mechanisms and constructs that enable
users to register real-world activities in the database system
and to express the dependencies among the data items on
these activities (See Figure 5(a)). The real-world activities are
mapped to functions inside the database of type real-world
activity. The dependencies that involve these functions are
called real-world dependencies. (2) Mechanisms to keep track
of the potentially invalid data items and reflecting their status
in the query results. Referring to the example in Figure 5(b),
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Fig. 6. Performance results for adding new dependencies and manipulating
the database items.

the gene function values are inferred from both the gene
sequence and direction values through a wet-lab experiment.
When a gene sequence value is modified (e.g., the underlined
values in GSeq column), the corresponding gene function
values are automatically marked as potentially invalid (e.g.,
the dark-marked values in GFunction column) until the wet-
lab experiment is re-conducted. (3) New semantics for query
operator that enable evaluating queries on either valid data
only (no false-positives), or both valid and potentially-invalid
data (include false-positives and possibly false-negatives). We
introduce the notion of false-positive and false-negative query
evaluation as illustrated in Figure 5(b). For example, if a tuple
satisfies the query predicate based on a potentially-invalid
value, then that tuple evaluates to false-positive in contrast
to true(e.g., the 3rd tuple in Figure 5(b)). Similarly, if a tuple
disqualifies the query predicate based on a potentially-invalid
value, then that tuple evaluates to false-negative in contrast to
false (e.g., the 5th tuple in Figure 5(b)). (4) New mechanisms
for invalidating and revalidating the data items, and for keeping
track of the real-world activities that need to be performed in
order to re-evaluate and re-validate the outdated data items.
In Figure 6, we present sample performance results that
show the overhead involved in adding new dependencies to
the database and in manipulating the database items, e.g.,
updating, invalidating, and re-validating the data. The results
demonstrate the scalability of the the proposed system under a
large number of dependencies and shows the practicality and
feasibility in its realization.

IV. CONCLUSIONS AND FUTURE WORK

In this dissertation, we proposed a database server for
next-generation scientific data management. We addressed two
core requirements which are: management of large-volume
multi-granular annotations, and management of data depen-
dencies that involve human actions. We realized both features
via extensions to PostgreSQL. The experimental studies and
performance analysis show the feasibility and practicality
of the proposed features and their performance gains over
other existing techniques and algorithms. Our plans for future
work include: (1) management of scientific workflows, (2)
annotation and provenance management in XML databases,
(3) management of data conflicts in scientific databases, and
(4) design of peta-scale data centers over cloud and massively
parallel computing architectures.
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